模温和充填压力的影响较小.高的模具温度有助于减小方向性,尤其是对要求的缓慢充填所产生的芯部方向性.充足的充填压力仅仅是为了得到充满的美观的塑件.过高的充填压力会产生不利的方向性和应力.图二十表示模温和充填压力的影响.
u 塑件内各点的性能变化
熔体温度和压力以及充填速率等成形参数在型腔内各点很少是相同的,尤其是头两项参数在流动方向上发生变化.在简单的塑件中,局部速度会在流动方向上改变;在复杂的塑件中,横截面上的局部速度也不一致. 局部速度还受到局部厚度的影响.甚至连型腔各点的模具表面温度基本上也是不同的.因为这些参数在模具中是逐点变化的,所以它们同样也影响到性能变化.像冲击和电镀附着性这类性能的确在塑件各点变化.
塑件浇口端的方向性常达到最大,并朝着盲端逐渐减小.结果垂直断裂冲击强度在浇口端较高,而在盲端较低.投掷冲击强度受不均匀方向相的影响,所以投掷冲击强度在浇口端较低,而在盲端较高.文献[15]中的一个范例说明,投掷冲击强度和悬臂梁式冲击强度可随位置发生变化.在一块4in宽的板上,从浇口处开始的15in流动长度内,垂直断裂冲击强度下降一半,而投掷冲击强度竟增加4倍!这个例子说明的另一点是:(不论是成形机还是位置变化引起的)成形参数可使一种性能得到提高而使另一种性能下降.注射成形过程控制中充满了这种矛盾.甚至连顶杆,塑件编码号或起伏之类的模具表面最小的扰动都可产生表面不规则的方向性,这会影响对表面方向性的敏感性,电镀附着性就是一个很好的例子.模具表面上与流动方向垂直的0.005in深的划痕可减小塑件表面的方向性.用这种技术可局部改善镀层附着性.文献[20.21]中讨论了这些模具表面影响如何干扰熔体烽面,并如何将其中影响传递到相吻合的塑件表面.
|