故障信号分析处理是对检测到的各种状态信息进行加工、变换,以提取故障征兆。目前,应用最广泛的故障信号分析处理方法是傅立叶(Fourier)分析和相应的FFT快速算法。借助于FFT算法实现的信号处理有频谱分析、相关分析、相干分析、传递函数分析、细化谱分析、时间序列分析、倒频谱分析、包络分析等。这些分析方法在故障诊断过程中起到了重要的作用,但傅立叶分析方法只适合于分析连续的、平稳的时域信号。为了有效地分析处理工程应用领域中大量的非平稳信号,人们把小波(wavelet)和分形(fractal)这两种新的工具引入到故障信号的分析处理中。它们的理论和应用研究十分活跃,预示着在故障诊断领域中将获得广泛的应用。
其实,在故障发生时,领域专家往往凭五官感觉到一些难以由数据描述的事实,他们根据系统的结构和故障发生的历史,就能很快地做出正确的判断。这种感性知识的获取和经验知识的表达、处理过程,事实上就是故障信息的智能处理技术。在模糊诊断系统中,这种基于经验知识的智能化信息处理技术表现在故障征兆对故障原因的支持程度或否定程度的建立上;而在专家系统中,则表现在各类诊断知识的获取和组织表达上。近年来,人们对诊断知识的获取、表达、组织和推理方法作了大量的研究,目前仍没有获得突破性进展。
由于大型机组的故障机理十分复杂,目前仍难以采用精确的数据完备地表达其运行状态,因此,研究故障信息的智能处理技术有着重要的意义。
2.3 故障源分离与定位技术的研究[11~13]
故障源分离与定位也称为故障模式识别,是将经过信号处理得到的有限的或不完整的特征信号与故障原因对应起来,使故障源定位。故障源分离与定位技术是故障诊断的关键技术,将故障源定位是故障诊断的最终目标。
20世纪60年代以来,随着故障诊断理论研究的不断深入,人们克服了越限诊断方法的局限,发展了多种故障源分离与定位技术,包括基于系统数学模型的方法、统计分析方法和模糊综合评判方法等。根据诊断知识的利用方式,可以将故障源分离与定位技术分为基于模型的方法与基于规则的方法两大类。基于模型的方法可以充分利用系统的内部知识,有利于系统整体的故障诊断;其缺点是系统的建模误差或外部干扰将对故障诊断的结果产生重大的影响。基于规则的方法,其适应性广、灵活,但故障的在线估计比较困难。
撇开实际应用场合而去评价某一种故障源分离与定位方法的好坏是没有意义的。在实际应用中,应根据具体诊断对象的特点和需要完成的诊断任务,恰当地选择或综合利用几种方法,才能取得较好的效果。