充型过程数值模拟一方面分析金属液在浇冒口系统和型腔中的流动状态,优化浇冒口设计并仿真浇道中的吸气,以消除流股分离和避免氧化,减轻金属液对铸型的侵蚀和冲击;另一方面,分析充型过程中金属液及铸型温度变化,预测冷隔和浇不足等铸造缺陷。
充型过程数值模拟技术由于所涉及的控制方程多而复杂,计算量大而且迭代结果易发散,加上自由表面边界问题的特殊处理要求使其难度更大,国内外学者经过多年研究已开发出了MAGMA软件,Pro CAST等。MAGMA软件可对中等复杂铸件进行三维流场分析,获得比较符合实际情况的初始温度场分布。
铸造充型过程数值模拟技术主要有三种方法:
1 SIMPLE法,即压力连接方程半隐式方法(Semi- Implicit Method for Pressure Linked Equation);
2 SMAC法,即简化标示粒子法(Simplifed Marker and Cell);
3 SOL A- VOF法,即解法 (Solu-tion Algorithm)及体积函数法 (Volume of Fluid)。
1.5 应力场的数值模拟
铸件热应力的数值模拟是通过对铸件凝固过程中热应力场的计算、冷却过程中残余热应力的计算来预测热裂纹敏感区和热裂纹的。应力场分析可预测铸件热裂及变形等缺陷。
由于三维应力场模拟涉及弹性-塑性-蠕变理论及高温下的力学性能和热物性参数等,研究的难度大。现在研究多着重于建立专门用于铸造过程的三维应力场分析软件包,有些研究是利用国外的通用有限元软件对部分铸件的应力场进行模拟分析,这对优化铸造工艺和提高铸模寿命发挥了重要作用。应力场模拟分析正向实用化发展,但迄今为止还没有一种科学方法准确测量金属铸件各个部位的热应力或残余应力。
1.6 铸件微观组织模拟
铸件微观组织数值模拟是计算铸件凝固过程中的成核、生长等,以及凝固后铸件的微观组织和可能具备的性能。铸件微观组织模拟经过了定性模拟、半定量模拟和定量模拟阶段,由定点形核到随机形核。这一研究存在的问题是很难建立一个相当完善的数学模型来精确计算形核数,枝晶生长速度及组织转变等。瑞士 M Rappaz教授与美国 Stefanescu教授在 1985年前后同时进行该项目的研究。他们从宏观温度场入手,分别对铝合金及镍基合金和铁的晶粒数,晶粒尺寸分布及二次臂距进行估算。铸件微观组织模拟研究今后将向定向凝固及单晶方面发展,同时在计算精度、计算速度等方面有很多工作要做。
|